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Anomalous Reflections Near a Caustic

Clifford J. Nolan William W. Symes

May 19, 1995

Abstract

We consider scattering associated to the reduced scalar wave equation. High fre-
quency asymptotic solutions of this equation leads to the theory of geometrical optics.
In this theory energy is transported along rays (orthogonal trajectories to wavefronts).
However this theory breaks down as soon as the ray field forms an envelope called a
caustic. This signals that a dramatic change in nature of wave propagation occurs in
the vicinity of a caustic. To illustrate this change of character we study an experiment
which shows that reflected waves may have arbitrarily high energy content relative to
the “size” of the scatterer. Moreover a theorem is proved showing that this unbounded
behaviour can only occur when a caustic develops.

1 Introduction

Our motivation for this study is the scattering of acoustic waves in the subsurface of the
earth. However the results are completely general, applying to any physical phenomenon
described by the scalar wave equation. We shall set up two physical models to demonstrate
applicability of our results. First we describe the scattering problem in geophysics and
then an analagous problem in electromagnetism.

For simplicity we consider the earth as a two dimesnsional halfspace (although the
results in this paper can be generaized to any dimension), with cartesian coordinates
(z,y) occupied by a fluid which has constant density and propagates pressure waves in
its interior at a local speed c(z,y). The Green’s function p(z,y,t) associated to pressure
waves travelling in the subsurface of the earth as a result of an energy source with time
signature f € L?(R) being fired on the surface at location x, satisfies the acoustic scalar
wave equation

-2 321”
<™ (2,9) 52 (29, 1) = Dp(z,y,t) = f()6(x ~ x,). (1.1)

Similarly in the electromagnetic case we have an electromagnetic field propagating in a
two dimensional half space as above. The electromagnetic field obeys Maxwell’s equations.
Let D, B, E, H, J respectively denote the displacement current, the magnetic field, the



TRrIP 95

electric field, the magnetic intensity, and the current density. Then Maxwell’s equations
are

VD = pfree

vV-B=0

- B
VXE-—W

VXB:J;,-,,-{-%?—. (1.2)

In addition to these equations we have the constitutive equations

J=0E
B = (uop)"'H
D = ¢eE (1.3)

where, € is the relative electric permitivity tensor and g is its value in free space. Similarly
p is the magnetic permeability tensor and po is its value in free space.

Now we make some simplifications to get to the reduced wave equation for the electro-
magnetic field.

Assume that the electromagnetic field is studied in a 2 dimensional half space which
is electrically neutral (pfee = 0), non-magnetic (4 = o), and non-conductive (o = 0).
Coordinates on this half space will be cartesian and a typical point will be denoted by
(z,y) and in future we will often write x in boldface for (z,y).

With these assumptions, it then follows (7] from Maxwell’s equations (1.2) that for an
electric field polarized along the x-axis

E(z,y,t) = (¥(z,9,1),0) (1.4)

satisfies the reduced wave equation equation

9z

where 0 < ¢(z,y) = \/C—T(z—’:(/i%‘%;’—y—). (1.5)

o 8 ( o
C—Z(z, y) 'at_;p(z, Y, t)— A’l/)(:t,y,t) = ('/J‘E?I;f)

At this stage we start our general study of the scalar wave equation.

2
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We study the related Green’s function for the reduced wave equation
—2 G
c*(z,y) W(x, t) — AG(x,t) = §()6(x — x,) (1.6)
corresponding to an impulsive source at location (z,,0) - see figure (1.1) for the corre-

sponding experiment. This enabales us to find ¥, since ¥ is just the right hand side of
(1.5); convolved with G.

Planey=0 Source
Xs
Reflected
Field
Incident
X C, Field
[ y dc
Reflector

Figure 1.1: The experiment
Assume that the coefficient ¢ has been split into two pieces
¢(x) = co(x) + bc(x) (1.7)
where ¢p is a smooth function and §c has much higher frequency content than co.

Denote by Go the solution of (1.6) with ¢ replaced by co. In (1.6), write G = Go + 6G
to define 6G. Then if one linearizes equation (1.6) about ¢, Go one finds that §G satisfies
the linearized wave equation

1 0%G 26¢ 8*Go

Thus éc appears as a source for the (scattered) wavefield 6G. Then Gp + 6G is the
Born approximation to G.

Our ultimate goal is to solve the following inverse problem. Given that we record
the scattered field on a finite portion [0, L] of the line y = 0, deduce éc. Crucial to the
solving of such an inverse problem is a good understanding of the nature of the forward
problem i.e. the operator which maps éc into such a recording on y = 0. We now formally
define this operator and proceed to investigate its character in the later sections. We
do not emphasize the inverse problem in this paper, but instead make reference to the
implication of our results for it.

Definition
(Féc)(z,t) = m(z,t)-6G(x,0,1) (1.9)
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where m € C°(R, x [0,T)) is a cutoff function which is used to reflect the fact that we
only record the scattered field for a finite time T' and for a finite portion [0, L] of the line
y=0.

Note that we are focussing on the linear behaviour of F as a function of the perturbation
§c alone. Thus, tacitly we assume that we have estimated cg ( there are various techniques
available for this ) in order to get an expression for Go (actually an asymptotic expansion
for Go will be used) as we shall later see.

The Main Result

We will show that if we impose some mild restrictions on the geometry of rays travelling
in the medium defined by the coefficient co, then we have that for a certain Hilbert space
H that

F:H - L*[0,L] x [0,T)) (1.10)

boundedly iff and only if the rays in co do not form caustics. This result will be stated
more precisely as a theorem in section 4.

Consequence

Besides the obvious physical interpretation of the result, the theorem has the following
consequence for the inverse problem. One needs to have knowledge of the spectral prop-
erties of F for an efficient inversion algorithm. The theorem shows that 7 may have a
large spectral radius when caustics are present in the medium. This indicates a source of
trouble for inversion algorithms only using local information, for example Gradient based
algorithms used to find the minimum of an objective function.

Finally for reference sake we give a list of the Green’s functions in various dimensions
in a homogeneous medium ¢g = constant.

n = 1: Go(xs;X%,t) = H(cot — |x — x,|)

C_oH(Cot — lx_ xal)

n = 2: Go(xs;x,t)=
2= \/c?,t2 —x - x,|?

§(cot — |x — x,])

n = 3: Go(x,;x,t) = T Tx — x|

(1.11)

2 The progressing wave expansion

As promised in the previous section, given that we know co, we can give an asymptotic
expansion of the Green’s function Go. This expansion is known as the progressing wave
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expansion (see [3], page 188). The description naturally leads to the notion of a caustic
which we define in this section too.

According to this theory we have an expansion summarized by
Go(x,;x,t) = a(x,;%x)5(t - 7(X,;X)) + Smoother terms.

Here the amplitude a satisfies the transport equation

V- ( @} (x,;x)V7(x45%x) ) =0 (2.1)
and the traveltime T satisfies the Eikonal equation
1
)2 =
|Vr(x,;x)|° = m (2.2)

Also we included x, just as a parameter in the above expressions.

Now we will discuss the meaning of the above symbols. S(x,t) is the most singular
term appearing in the Green’s function for a homogeneous (¢(x) = constant) medium.
For example in one dimension S is given by (see the list of Green's functions given in the
last section)

S(xs,%,t) = H(cot — |x = x,})

etc. The level curves of the traveltime function 7(x,;x) are just the wavefronts emanat-
ing from the source location x,. Alternatively, instead of dealing with wavefronts, we
can consider the equivalent concept of rays which are the orthogonal trajectories of the
expanding/contracting wavefronts. Then 7(x,;x) = 7(x) represents the amount of time
that a ray takes to travel from the source x, to x. Similarly along the rays there is an
associated amplitude a(x,;x) of the signal. This represents that amplitude of the signal
at x which departed from x, along a ray which intersects x.

Of course implicit in all of the above description of 7(x,,x) and a(x,; x) is the fact that
we assume that there is only one ray leaving x, and arriving at x; i.e. we assume these
functions are single valued. This is usually only locally true for even mildly inhomogeneous
media. When this fails to be the case there is generally a locus or curve to which there
is a ray tangent at every point. For example see figure (5.9) for a distinctive cusp shaped
curve with this property. Such a curve is called a caustic. A more precise mathematical
description of a caustic is given by reference to the material in [4], section 3.6. For the
reader who wants a more precise description of a caustic, there follows a summary.

The Eikonal equation is first order nonlinear partial differential equation (p.d.e.) and
we recall how local solutions to such equations may be built geometrically via the method

of characteristics as follows.

Consider solving the following first order nonlinear (p.d.e.) described by

or
f(x,b—;)—o, XGX,
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rlm(x’) = g(x);

Vrm(x') = h(x)) (23)

for 7(x), where x' = (2}, -y Thoy) aTE appropriate coordinates on the hypersurface M.
Let v(x') denote the normal vector field on the hypersurface M. If for all points x' on
the hypersurface, we have that f(x',v(x)) # 0, then M is called a non characteristic
hypersurface for the p.d.e. (2.3).

The method of characteristics says that if M is a non characteristic hypersurface for
the p.d.e (2.3), then a local solution of (2.3) near M can be constructed as follows.

Consider a neighbourhood (in R"™) of M which we will call X. We will define a solution
of (2.3) in an open subset of X.

We denote by T* X the cotangent bundle of X which will have coordinates denoted by
(%,€) = (215> Tni €15 ...&n). Then if we write § = VT, we can view fin (2.3) as a function
on T* X which we will assume is smooth. Thus trying to find a local solution to equation
(2.3) is equivalent to finding the zero set of the so called Hamiltonian function f(x,8)
through the hypersurface M. In the case of (2.2) the function f(x,6) = €12 — 1/¢3(x).
The solution to this problem is simple to describe, and the interested reader can look in
[4] for a justification of the following prescription for a solution.

Associated to the Hamiltonian function f(x,§) is a vector field Hy on T*X given in
the above coordinates by

n.a a 0 0
Hix,6=3 E—Ef;(x,e) o= - I x5 (2.4)

=1

Here { '5%’;\(::,6)» 5%‘(1.6) }'—1 form a basis for the tangent space to T*X at (x,§). Note

that Hf(x,§)- f =0 verif;'i—ng that f is constant (equal to zero) along the flow of the
vector field Hy.

We consider the curve generated through a point x' on M by the flow of Hy. Such a
curve is called a bicharacteristic curve. Then consider the union of all the bicharacteristic
curves through M generated by this procedure. This union of curves is a smooth n
dimensional submanifold of T*X which we call A. It turns out that if we only let the
bicharacteristic curves flow as long as the resulting A remains transversal to the fibres
in T* X, then we will have the following situation. f |a =0 and furthermore A has local
coordinates (x,£(x)), where £(x) is a smooth function given by £(x) = Vx¢ for some
smooth function ¢(x) satisfying (¢, Vo)l m(x’) = (g(x), h(x)). Thus our local (unique)
solution for 7(x) is in fact given by #(x). Note that all of the above construction is
equivalent (see (4.1)) to solving a system of 2n ordinary differential equations (generating
the Hamiltonian flow) but this lacks the geometrical insight we need to now define a
caustic.
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What is interesting to us is what happens when this transversality condition mentioned
in the last paragraph fails to hold. This says that the canonical projection Il : (x,§) — x
from A into X fails to be a diffeomorphism. i.e. when projecting from a neighbourhood of
such a location, then many bicharacteristic curves get “concentrated” in X upon projec-
tion. The projection of a bicharacteristic curve into X is known as a characteristic curve
or simply a ray. The rays mentioned before are exactly this concept applied to the Eikonal
equation. If there is a subset C in X which is the image of the canonical projection from
A and the projection is not a diffeomorphism here, then this curve A is an envelope of rays
by definition. Under these circumstances A is known as a caustic. In the case n = 2 and
A being a curve (not necessarily smooth) this curve is known as a caustic curve.

We give the following schematic (since we cannot give a 4 dimensional picture) figure
as an example of the above ideas.

(&.&)

=

Figure 2.1: The projection II from A to the caustic A

3 A motivational experiment

We will now give an argument for the main result of the paper. The motivation consists
of two parts. First we give a methematical reason which strongly sugests that the result
may be true, and then we give a heuristic/physical motivation.

:3.1 The mathematical plausability

We shall soon see that the forward operator F is a Fourier Integral Operator [4] and we

shall quote a result about such operators which is the basis of the argument here. We
state the result here for convenience.

Theorem 3.1 (See - [4], page 154) Let C C T*X x T*Y — {0} be a homogeneous
canonical relation such that



TRIP 95

{( 2) ’ (8)} # Tietam (©),
{( ?,) ! (2)} # Tetym (€) and

3. The differential of the projectionC — T*X, (resp. C — T*Y ) has rank > dim X + k
(resp. > dimY + k). Here k € Z.

Then a Fourier Integral Operator A € IT(X,Y; C) is continous:

s—m-L(dim X+dim v -2k)

Comp (Y) = Hp, , Vs,m€R. (3.1)

1

In our case it will turn out that the forward operator F € I7([0, L] x [0,T}, X,;A)
for X equal to a half space representing the earth’s subsurface and A is generated by a
family of bicharacteristics associated to the wave equation - see [12]. It so happens that
when caustics develop in the ray field, that the number k¥ mentioned above drops from
k = dim X = dim Y to some smaller integer. When this happens, the index on the
righhand side Sobolev space in (3.1) is strictly less than s — m. In our case this means
that if a caustic is present then the theorem is telling us that we cannot be sure that * is
continuous from Hz(X) to L?([0, L} x [0, T]). We can therefore reasonably hope to prove
that F is not continuous in the presence of caustics and consequently that the estimate
in the theorem is sharp.

3.2 The physical plausability

This argument is based on the following experiment which was first suggested in [2]. It
was also this work which first suggested that a theorem like the one mentioned in the last
section may be true. In the former thesis [2], formal arguments are presented in support
of such a theorem. The ideas presented in this section are also needed for the next section.

Here we consider performing a sequence of separate experiments labelled by an index
J, whereby a reflectivity (dc;) is introduced to reflect the incident bundle of rays back to
the surface of the earth in the form of a plane wave (see figure (3.1)). Before proceeding
any further we define more precisely how the “reflectivity” sequence é¢; is to be chosen.
We will restrict our attention to the reflectivity sequence of the form

bej(z) = xj(z) e** (3.2)
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where x; is a test function.

Next we have to describe the functions x; while we reserve the choice of sequence of
vectors k; until later. In order to describe the supports of the reflectivities x;, let us denote
by A the curve prescribing a caustic that develops as a result of tracing rays through the
medium from our point source z, - see figure (3.1). Also let us denote by 7 the interior
of the closed ray tube generated by the rays leaving the the source point z, and traveling
until the caustic curve A is touched by them. We will refer to 7 as the “precaustic region”.
In the next section, we will give a more mathematical description of the precaustic region.
For the general element in our sequence we set x; equal to the bump function supported
on a disk of radius v; and with centre (z;,y;) i.e.

evildi, if \J(z-z;*+(y—¥;i)? <v;

GEV=4 g g VE -+ =) 2y

where

dj =v; —\/(z = 2;)* + (y - y;)*

The quantities v; are chosen to be a strictly monotonic decreasing positive sequence, while
z;,y; are chosen such that the distance between the centre point (z;,y;) and the caustic A
is also strictly decreasing. We will require that these disks do not touch the point z, and
are also contained in 7. Furthermore we will refer to the interior of Supp x; as ;. This
situation is depicted in the figure (3.1). Note that the same bundle of rays is intersected
(“trapped™) by the reflectivity éc; in each experiment (i.e. for all j). Moreover the radius
of the disk Q; — 0 as its centre approaches the caustic (i.e. for all ).

The fact that it is always possible to “trap” the same bundle of rays and reflect them
into a plane wave says something about the shape of the reflector in order that Snell’s law
be satisfied. That this experimental set up is possible (locally) is simple a consequence of
the Implicit Function Theorem (see the appendix for a proof).

The experiment also suggests that the reflectivity sequence reflects arbitrarily large
amounts of energy relative to the “size” of the reflector support. Recall that the wave
energy in a region is proportional to the L? norm over said region of the amplitude of the
signal. In the precaustic region close to a caustic the raytube 7 collapses (its diameter
tends to zero) and Geometrical Optics (assumed valid here) predicts that the amplitudes
“blow up”. The reader can verify this immediately by integrating equation (2.1) over
the raytube, applying the divergence theorem and noting that Vr is parallel to the rays
generating the raytube. This predicts an arbitrarily large energy density as we approach
the caustic and the raytube collapses. However there is a limitation to the above argument
as one might have suspected. The above argument relied on geometric optics (ray theory)
which is only valid, provided we are on the order of one wave length of the incident field
away from the caustic. There exists a more complicated uniform expansion (see [16},[5])
in the neighbourhood of a caustic.
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Our source function §(t) in equation (1.6) contains all frequencies, and hence arbi-
trarily small wavelengths. Thus we may expect geometrical optics to be valid for these
components arbitrarily close to the caustic A.

Based on this experiment one may then suspect that the forward map F is an un-
bounded map, i.e. that we can find a reflectivity sequence such that the ratio

|Féc;lla
llée;lla

as the experiment index j — 0o. The subscripts a and g indicate two different norms; the
choice of which will become clear in the next section. Our task is to show by example,
unboundedness of the latter ratio and hence unboundedness of the forward map. This is
the main result of the paper.

Smoothly Varying
Background Medium

Figure 3.1: A Sequence of reflectivities

4 TUnboundedness of the forward map

In this section we give a rigoroous proof of the main result of the paper. Let us first
establish the hypotheses and notation for this section. Let Q be some open subset of R".
Then define H2(2) as the closure test functions C3°({) in H".

Throughout this section, a standing hypothesis will be made. It will be referred to as
“the simple ray geometry hypothesis” (SRG), and we will now describe it.

Recall from section 2, that associated to solving the Eikonal equation (2.2) in R",
there is a 2n system of ordinary differential equations (0.D.E.’s). This system is known as
Hamilton’s Equations and solving it amounts to computing a Hamiltonian flow associated

10
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to the function on f(x,€) = |¢|* — ¢~3(x). The system of autonomous O.D.E.’s follows

x= Vef(x(t),£(1))
€=~V f(x(t), £(t))
where - = % (4.1)

Let 8 € S! and denote by ( X(t), £s(t) ) the solution of equations (4.1), which have initial
conditions ( x,, ;é—.)- ). Note that t is just the ordinary differential equation parameter.

Define the following sets
Qx,) = { x: x = Xp(t), for some § € S™!, and t € [0,7] },

Q0(x,,1) = { x € Q(x,): if x = Xg(t), then for 0 < t < T, Xo(t)
lies only on the ray Xg and 7(x,,x) <t }.

The boundary points of Q°(x,, t) belong to caustics, and Q°(x,, T') defines more precisely
what we have been calling the precaustic region.

Now we state the SRG hypothesis:

1. All reflectivity fields are contained in Q°(x,,T).
2. If 8 is the angle between an incident ray and a reflected ray then cos(8) > —1.

3. There are no rays returning to the surface y = 0 and grazing this surface.

Note that the latter two conditions in the SRG hypothesis ensure according to Rakesh
[12] that the forward map F is a Fourier Integral Operator.

In particular, all of the disks §; defined in section 3 are assumed to lie in the set
20(x,,T).

Our next goal will be to establish the following result.
Theorem 4.1 Assume that when rays are traced through a medium, that a caustic A

forms. Then under the simple ray geometry hypothesis, the forward map, F is bounded
from HY*(QO(x,,T)) to L¥([0, L] x [0, T]) iff 89°(x., T) A = 0.

The operator F is in fact a Fourier Integral Operator (FIO) and hence the proof of the
theorem requires a knowledge of FIO’s. An introduction to this theory can be found in
the following references [4],[17],[8],[6].

11
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We note also that even when caustics are produced, the operator F (which is now
unbounded) still retains the property of being an FIO ( of order 1/2 ) provided that there
are no rays leaving the source and returning to graze the plane y = 0. This latter result
is shown in [12]. In the latter case, it also has to be assumed for technical reasons, that
the source location x, is strictly below the surface i.e. has positive y, coordinate.

A large part of this section will be devoted to the proof of the theorem. We will need
to give some background to establish notation. We will also need several lemmas before
we commence the main proof of this theorem.

First, we recall an important fact regarding a subclass of FIO’s called Pseudodifferential
Operators (¥DO’s) - see [4], page 154. Suppose P is a ¥DO of order u then it has the
following continuous mapping property on the Sobolev spaces

PiH: - HZE.
It will be useful to study the so called L? normal operator A” which is simply defined

by
N='FoF

where ' F is the L? adjoint of F.

Denote by F;, N; the restriction of the forward and normal maps respectively to the
disks Q; defined in section 3, so that we have

Fi+ HM3(Q;) — L*([0, L] x [0, T])
F; 2 L¥([0, L] x [0, T]) — HY2(Q;)

N; - HYQ) = HZYXQ;). (4.2)

We remark that we will only use §c; € C$° but note that this function space is dense in
the space of distributions and in particular dense in Ho / 2(Qj). The idea being that if the

forward map were to be discontinuous (unbounded), then it should be unbounded on the
test functions too (by the density). In fact we will construct a sequence of test function
reflectivities, and then show that the forward map is unbounded on this sequence in the
-sense stated in the theorem.
We can now start to state and prove the lemmas needed to prove the above theorem.
Lemma (7.1) below gives an asymptotic expansion for A}, which is derived in [14].

For a source location x, and a receiver location x, on y = 0 define

B(xs, Xy, X) = 7(X,4, x) + 7(x, X,),

12
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Vo = |V (sin(¥), cos(y) ),

§

Y nof= 2,
CER, L=

(4.3)

Also given the pair (x,£), there is a unique location on y = 0, x, = X,(x, é) defined as
follows. Consider a ray leaving the source x,, arriving at x, and reflecting so that —£is the
bisector of the angle #(x,,X,,x) made by the incident ray and the reflected ray emerging
at x, - see figure (4.2).

Denote by é¢; the Fourier transform of éc;. Then we have

Lemma 4.1 ’ .
Nidei(x) = [ dE e, €)625(6) (44)

where

le‘(x, E) = no.j(x’ E) + O(X, é)

(c‘ 3 (¢)m(x4,Xr s )a(X,,X)a(Xr ,x)) ’
(14+cos0(X4 ,Xr,X)) gs‘%(x. Xr,X)

no,j(X, E) = |£|

Xp =X, (X,€)

Lemma (4.1) says that the normal operator A is a Pseudodifferential operator (¥DO)
[15] (of order 1).

The following result will become important to us soon.

Lemma 4.2 There ezists a conic set = in R?* — {0} based at 0, and a sequence of disks
Q; such that
inf nO,j(xv 6)

—~o0asj—ooo,Vé€ENSL 4.5)
xe®;  |¢] (

Proof: Define 9;(x) as the characteristic function of the disk Q;. Then according to
Lemma (4.1), we have

} 2
nj,o(x, E) _ (c.E (x)m(x,, Xr, t, )a(x” x)a(xr, x)) ‘
€] B (1 + cosb(x,,x,, x))% g%(x,, 0y %) J;(x) . (4.6)

Xr=Xr (x,f)

13
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The function ¥; has been appended to emphasise the fact that it is understood, x € &,
where Q; is defined as in section 3. Towards the end of this proof we will modify the
definition of 2; slightly.

The amplitude term a(x,,x) in (4.6) is unbounded for an incoming wave with un-
bounded frequency content as discussed at the end of section 3. The same is true for
a(x,,x) because it satisfies the transport equation (2.1) which can be written as an 0.D.E.

gt-a(x,.,x(t)) + %v V(% x(2)) = 0.

Since a(x,,X) obeys an ordinary differential equation (transport equation) with a nonzero
initial condition we can bound this amplitude from below by some constant.

s X2 Xs

Portion of a Cauatic

Figure 4.1: Arguxﬁent for boundedness of C%%

With regard to the term J; z)a—'l’—(x,,x,.,x), we must be sure that this term does not
become large with increasing j. For then it could begin to compete with the amplitude
terms, and the unboundedness the ratio in (4.6) would no longer be obvious. Therefore
we give the following argument to prove that if we restrict the cone in which £ varies
then we can always avoid this situation. Pick a point x. on the caustic A such that there
is a ray R, starting at x. and intersecting the plane y = 0 transversally at x, - this is
possible by the definition of a caustic. Denote by a; the takeoff angle from the vertical
made by R;. Now because 2°(x,,T) is an open subset of y > 0, there must exist a point
y € A sufficiently close to X, and an angle a; sufficiently close to aj, such that the ray
R, departing from y at an angle of a; must intersect R; at some point z € 029(x,,T)
and also R stays within Q°(x,,T) and intersects y = 0 at some point x; transversally.
The latter observation is true because of continuous (smooth) dependence of solutions to
0.D.E.’s (rays) on the their initial data. If x, = x, then the SRG hypothesis is violated at
z. Therefore we can assume that the ray R; emerges on y = 0 at x; # x,. Now we have
the following situation (see figure (4.1) ): there are two rays departing from y; namely
the ray Rz and the ray Rj defined by the ray connecting x, to y (this exists since y is a
caustic point). Let R3 have takeoff angle a3, so that the rays R; and R; depart from y
with take-off angles a3, a3 respectively, and arrive back on y = 0 at two different locations.
Therefore there must exist a ray departing from y with take-off angle a* € (a3, a3) and
intersecting y = 0 at some point x} such that er-(x,, x},y) # 0. In fact y could be any
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caustic point, so %‘é(x,, X}, X.) is finite, provided the £ varies in a sufficiently small conic
set Z which has axis equal to the line that makes an angle a* with the vertical. Therefore
gx—'%(x,, x¢(X, £),x) is bounded independent of j if we restrict the cone in which ¢ varies,
or correspondingly restrict the interval in which z, varies.

Also, for any j, we can always pick a suitable L and T such that m(x,(x, 6),t,) =1,
whenever x € ©;, £ € 2N S? and ¢, € [0,T).

Clearly all other terms in (4.6) are such that we can find a sequence of positive numbers
{C;}, with C; — o0, so that for (x,£) € ;xE, then ng j(x,£) / |€| > Cj. This completes
the proof of the lemma. O

Now define a new operator J(fj, which is “extension” of Nj got by giving it the same
symbol as N; in ©; X Z and extending it to all of Q; x S1 so that its principle symbol
fo,j(x, £) satisfies the inequality

inf 7o (x,€) > C;/2. (4.7)
x€efl;, (eS?

and such that #; is still a symbol of order one. This construction is trivial to carry out, and
makes N; a strictly elliptic ¥DO of order zero. Thus if §¢c; has Fourier transform rapidly

decaying outside of the cone Z, then N;dc;(x) = Néc;(x) modulo a smooth function of
X.

From now on in our demonstration of unboundedness of the forward map we will assume
that our reflectivities have rapidly decaying Fourier transform outside of = and we will
accordingly replace N by N, Under this assumption .N} differs from AN by a smoothing
operator. However we continue to write N in place of A; for convenience of notation.

Proof of Theorem (4.1):

[=] We first prove the only if part of the theorem. To prove it we will take the
contrapositive point of view and assume that 90°%x,,T)(NA # 0. Then this part of the
theorem will be proved by showing that F is unbounded under this assumption.

In the following < -,- > will denote the usual L? inner product and < -, >(, _,) will
denote the usual Sobolev space duality pairing. Also || - ||, will denote the norm in the
Sobolev space H*.

The key to the proof of the theorem is Garding’s Inequality [15] (page 55), which says
that

< Njéej,bc; > > Cl,j||6cj||§_ + < §jbej ¢ >(r )
3

where §; is a smoothing operator that arises in the proof of the Garding Inequality. This
says we have

I F5deille = < bej, Njde; > 2 Cujllbe;ll} - Crsll8¢;li7. (4.8)
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We will apply Girding’s Inequality to NV; (notice that our error of replacing AV; by N; could
be absorbed by the smoothing operator S;, under our assumption that our reflectivities
have Fourier transform decaying rapidly outside of the cone Z).

The proof of Garding’s Inequality says that r can be any real number, and C} ; is given
by

1 . no,;(x, €)
Cij== inf —L 22 4.9
MNZ3 ceontes I (49
(we have just shown that this sequence is unbounded).

Next let us fix r = 0.

Our goal now is to show that we can construct éc; (by choosing |k;| appropiately) such
that the first member of the right hand side of (4.8) is the dominant term.

Let € > 0 and for any j € N we want to find éc; such that

= lléeillo
T ldejll

Having succeeded in showing this is possible then the first term on the right hand side of
(4.8) is dominant and we get unboundedness of the quantity

(6cjy Njdej) _ || Fée;lld
l1éeill3 lléeill
2 2
Now we need just prove that we can find a reflectivity sequence such that the relation
(4.10) holds.

Coj<e€, Vi (4.10)

R; = (4.11)

Recall that our reflectivity sequence has the form
be;(x) = xj(x)eh™ (4.12)
where x; € C§°(R2;). Then we have that

locsli} = [ AF(Oloes(0)F* ¢
where A(¢) = (1 + |¢]?)%

= /A%(()Ue"x-("roxj(x) az| dc

1 2
=/,\7(C+k,-) dc.

/ e X x;(x) dz

So, 8esli} = [ AF(C+ kDIRHQP de.

16
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Now use Peetre’s Inequality [13] (page 21),
X(w) < 2°1Flw — m)x(n)

withs:-li, w=k;, n=1k;+( to get
loest 2 2k (k) [ AH(0) IO

—1.1
= 27 Exd kil 2.
Therefore we have

N2
75 £ Co,; 2%’\(%)'%@9—
le;'ll_%

1 —1 lIx;li3
= Co,; 2¥A(k;) ¥ 1Xillo
R

Next we choose the magnitude of k; sufficiently large so that

|2
2ba(ky)t ille g v
1]y
2
holds; thus yielding r; < € independently of j. Note this relies on the fact that the ratio
112
W')('*—ﬁ',lﬂ— is independent of k;. This proves the “only if” part of the theorem.
-4

[<=] The “if” part of the theorem is trivial, because if 3Q°(x,,T)NA = @, we know
that the normal operator !F F is a ¥DO (see [16], [14]). This means that it is a continuous
operator on the Sobolev spaces, as remarked before. The result follows, and the proof of
the theorem is complete. O

This was the hardest result to prove in this section and now we can improve on Theorem

1 in the form of the following corollories.

.Corollary 4.1 Assume that when rays are traced through a medium that a caustic A
forms. Let Q be a subset of the halfspace y > 0. Then under the SRG hypothesis we have
that the forward map F|q is bounded from Hcl/z(ﬂ) — L¥([0,L] x [0, T]) if RNA = 0.

N
Proof: In general Flq is a locally finite sum of FIOQ’s Flgq = Z]’;, where each F; has

1=1
canonical relation given by a canonical graph (see [16],[11}). The proof now follows from
Theorem 3.1 and the proof of Theorem 4.1. O
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Corollary 4.2 Assume that when rays are traced through a medium that a caustic A
forms. Let ) be an open subset of the “post-caustic” region i.e. the multiply covered region

of the medium. Then Flq is bounded from H*(Q) — L([0, L] x [0, T]) if N A = 0.

N
Proof. As in the previous corollary Flg = Z.F.- holds. The proof of sufficiency follows

from the previous corllary. For the necessity,‘—v:e construct a reflectivity sequence éc; —
ce HY %(Q) as in theorem 4.1. However this time let us arrange for the following to hold.
At any point z € ) there several sheets of the Lagrangian A manifold associated to F
lying over z i.e. #"}(z) = {A1,---,)p} where each ), is associated to a different sheet of
A. Let us arrange that the wavefront set (see [9] for definition) of ¢ only intersects one
sheet of the Lagrangian A:

WF(c) ﬂ A is connected. (4.13)

This sheet corresponds to the canonical relation of the FIO F; for example. The proof
now follows as in theorem 4.1 because

Njécj = ‘}'1}'16cj + Sj&l:j (4.14)

where §; is a smoothing operator which can be absorbed into the smoothing operator
appearing in the application of Garding’s inequality in theorem 4.1. The proof is completed
by applying theorem 4.1. to the operator F,. O

Remark: Note that the question of boundedness as in the above theorem and corol-
laries when a reflectivity field has its support only on a caustic is still an open (no pun
intended!) question.

Remark: Note that in theorem 4.1 and the above corollaries we have an interesting
result when caustics form in a medium. One might be concerned about how likely it is
that a caustic will form. In the paper by White [18], it is argued from a stochastic point of
view, that even in a mildly heterogeneous medium a caustic will form (after a sufficiently
long time) with probability one!
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y=0
Xr
Reflected
Fi
Ve(xq x)

Figure 4.2: Snell’s Law and the definition of z,(z, £).

5 Numerical Tests

There is also another forward map related to F. It is the map resulting from the more
general source f(¢)6(z — z,) on the right hand side of (1.6). We call this forward map F[f]
to emphasize its dependence on f. Since F results from an impulsive source §(t)é(z — z,),
then we must have F[f] = F # f(-). It is obvious then that F[f] is unbounded too
for a suitable source function f € L?. The choice of f is important in the numerical
experiments, since it is the modified map F[f] that we will implement in this section. For
convenience of notation, we will write F in place of F(f] throughout this section.

In order not to have to figure out what reflectivity fields give a large ratio R; (defined
by (4.11) with F replaced by F[f]), we decided to to run a power method, so that the
computer works this out. First though, we need to clarify how the power method applied
in our case.

Define
]\fjh = .7:; o Fj,

where F7 refers to the Hc% (2;) Hilbert space adjoint of F;.

This quantity is of interest because of the following relation

IFi8¢ill3 =< N} 8ej, 6c; >y .

1
Therefore we have that the largest value of ||F;éc;||2 in the unit sphere of HZ(;) is
equal to the largest Eigenvalue of Nj" (recall that computationally ./Vj" as a linear operator
is some finite dimensional matrix!)
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It is this Hilbert space normal operator that we apply the power method to. So next
we calculate F; in terms of quantities that we can implement.

Define the following operator on Sobolev spaces
A=(I-V.V)i,

where I is the appropiate identity operator, for the Sobolev space in question.

Lemma 5.1

_/\/';‘:A‘1 o 'F; o F;

1
Proof: Let éc; € H2(Q;), v; € L*([0, L] x [0,T]). Then we have

(Fibes v5)o = (bcjy *Fv;) (5.1)

(%v"%)
Note that the right hand side of the last equation is just a bounded linear functional on

1
HZ () and so by the Riesz representation theorem we are guaranteed the existence of the
operator ¥ such that ‘

(Fibcj, ) =< bcjy Fv; >% (5.2)

Thus we get

t
< 661',.7:;1)1' >%= <56j, fjv_,'> 1

2

= (A¥bcj, AT F}v;) = (8c;! fj%')(%,_%)

= <6¢,~,A.7-';vj>(%'_% = <6cjvt ]:J'”J'> 1,-1

=3

= NP = FIF; = A7VUF 7. (5.3)
This concludes the proof. O

Four experiments were performed and in each case the following was the procedure.
The (Hilbert space) normal operator was composed of several operators reflecting the
result of the last lemma. These maps in turn were implemented by finite difference codes
or in the case of the A operator this was done by using discrete Fourier transforms. This
normal map was run many times with the output of the normal map being normalized and
then used as the input again. In this way the power method was finding the Eigenvector
(reflectivity) corresponding to the largest Eigenvalue of /V]-" (corresponding to a large value
of R j).

20



TrIP 95

It was also noticed that in all cases that as we moved §2; away from the source the ratio
R; decreased until it started to approach the caustic when it started to increase in the
vicinity thereof again. On the other side of the caustic it of course decreased again. It was
found that just off centre from the peak of the caustic (see figure 5.9) that R; was larger
than at the peak which also seems interesting; perhaps some interference is responsible for
this effect. This is the location which we chose for our tests (see figures (5.1),(5.2), etc).
Note that we implemented A, which is A restricted to Q;, by injecting 2; into a larger
grid, applying A and then projecting the result onto ;.

The four experiments performed were the following. In the first experiment a peak
frequency of 126 Hz was used for the source in a medium which has a lens (low velocity
zone) in the background velocity co which forms a caustic (see figure (5.9)). The reflectivity
got from the power method is shown in figure (5.1) and the output of F is shown in figure
(5.3). The second experiment is identical except the lens is removed to leave a constant
background of 1500m/s (the lens had a minimum velocity of 1200m/s approx.) The results
are shown in figures (5.2) and (5.4). The third experiment is the same as the first except
the source peak frequency is reduced to 63 Hz; see figures (5.5) and (5.7) for the results.
The fourth experiment is the corresponding lower frequency experiment as the second; see
figures (5.6) and (5.8) for the results.

The shape of the reflectivity got in these experiments makes sense because it is oscil-
lating in a vertical direction which is the direction of the impinging rays for the most part
and hence it will reflect most of the energy vertically back to the receivers. The output
of F is easily interpreted too; we see that it has several “layers” in it corresponding to
reflection from the various peaks in the reflectivity.

For the sources we used Ricker wavelets, which roughly speaking is the second derivative
of a Gaussian function. More precisely, if v,r denotes the peak frequency of the wavelet,

d - tz 2
f(t):we YL w = (Trpk).
See figure (5.10) for an example of a ricker wavelet. In our tests the wavelets were nor-
malized so that the sup norm of their Fourier Transform was unity.

The results for the maximum values of R; are indicated in the captions. These results
indicate a stronger reflection in the vicinity of the caustic and this is enhanced at a higher
frequency as expected since the theory was based upon high frequency asymptotics. The
next step to carry out is to refine the grid so that we can have smaller reflectivities which
can be finely sampled to oscillate rapidly as seems to be what the reflectivity “wants
to do” in order to get a large value of R;. The unfortunate aspect of this is that the
computational time goes up by a factor of around 8 every time we halve the grid size and

time step. Also we need to consider different sources in view of the comment at the end
of the last section.

If one examines the asymptotic behaviour of the wave field theoretically in the neigh-
bourhood which actually includes a piece of a cusp shaped caustic, as was done in [10]
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one finds that the amplitude is larger than the field away from the caustic by a factor
of w!/® if our probing wave is monochromatic of frequency w. This is not a very large
exponent and thus indicates that quite a large frequency may be needed to actually see the
effect of our theorem. This again is limited by computational resources; especially memory
considerations will be important if we are to sufficiently sample our source function.

The following pictures of Féc have time along the vertical axis (increasing downward)

while the z, coordinate is the horizontal coordinate. For the reflectivities, the vertical axis
is the “y” spatial axis, and the horizontal axis is the “z” spatial axis.
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Plane 1
Trace 420 430 440
76 78

100 100

200 $ 200
Trace 420 430 440

Plane 1

Figure 5.1: Reflectivity éc; - Pk Freq. 126 Hz; Lens Medium; R; = 0.10e-2. Horizontal
axis = x, vertical axis = y.

Plane 1
Trace 420 430 440
76 78

100 100

200 : 200
Trace 420 430 - 440

Plane 1

Figure 5.2: Reflectivity éc; - Pk Freq. 126 Hz; No Lens; R; = 0.21e-3. Horizontal axis =
x, vertical axis = y.
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Plane 1

Trace

76 76

100

100

200
Trace

Plane 1

Figure 5.5: Reflectivity éc; - Pk Freq. 63 Hz; Lens; R; = 0.49-3. Horizontal axis = x,

vertical axis = y.

Plane

Trace 420 430 440
76 r 76
100 100
200 : 200
Trace 420 430 440
Plane 1

Figure 5.6: Reflectivity éc; - Pk Freq. 63 Hz; No Lens; R; = 0.99e-4. Horizontal axis =

X, vertical axis = y.
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Figure 8.9

-4
-

800 810 820 830 840 850 860 870 880 890 900
X

Figure 5.9: A picture of rays traced true the background medium co with a lens. Note the
cusped envelope = a caustic curve.

Plane
Trace

Trace
Plane 1

Figure 5.10: Ricker wavelet with w = 3.9e4. Horizontal axis = amplitude in meters,
vertical axis = time in milliseconds.
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6 Conclusions

We have shown that the forward map associated to the Linearized Wave equation is
discontinuous in the prescence of caustics. This has important consequences for Linearized
Inversion techniques. Any local methods, for example gradient based algorithms, will have
obvious difficulties because of the loss of differentiability and/or continuity.

As a consequence of the unboundedness of F we have that the normal map cannot
always be a Pseudodifferential Operator because if it were it would have an order m
associated to it and this would mean that it would map H2(Q;) — H7;(£;) continuously
but as we have just seen the operator grows without bound as we let 2; become closer to
the caustic (for a sufficiently high frequency of incident waves).

The reader will notice that we needed to use a reflectivity field with indefinitely high
frequency content in order to prove unboundedness. This is really the reason for the title of
the paper; we can get lower estimates on the forward operator bound which grow without
bound as we let Q; approach a caustic (for a sufficiently high frequency content in the
reflectivity field). This means that we will see an “anomalous” reflection, meaning that
we will see a large signal relative to the size of the reflectivity that reflected it back to the
surface.

Note that the results in this paper, were for a two dimensional medium, but corre-
sponding results hold in any dimension.

Finally the current numerical results are comsistent with the theory. The extent to

which this phenomenon may be observed is still undetermined at the moment. Further
tests will be carried out in order to try to settle this question.

7 Appendix

Existence of Plane wave reflectors

In this section we will establish the intuitively obvious fact that the plane wave reflectors
mentioned in the introduction do actually exist from a rigorous point of view.

Consider the setup depicted in figure (7.1). First we set down some notation. Let us
denote by X the two dimensional vector (z,v) as indicated in the diagram. Let V be a C°
vector field which evaluates the unit vector parallel to the velocity vector of a ray leaving
the source and passing through the point of evaluation (see diagram for example).

Now specify the direction in which you want the plane wave to be reflected i.e. specify
a vector r = (1, 73); this choice will have to be restricted a little later but is more or less
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arbitrary in general. Then let Ng € T(,,,,’W)R2 be of the form
1

("50’ 1)
V1+8

(The reason of this choice is that eventually N will be the normal vector of the graph
generated by y = y¥(z); for some C! function .) Also choose N in such a way that the
following equation which expresses “Snell’s Law of Reflection” is satisfied

No = N(Xo) = N(zo0,%) =

No-(r+V(Xo))=0

thus we have that
- 1160 — Vi(Xo)bo + 12 + V2(Xo) = 0 (7.1)

In general we want this latter equation to hold with Xo replaced by X and §p by §(z) i.e.
suppose we can have some reflecting curve given by the graph of y = ¥(z), then the unit
normal vector to it is given by

ﬁ(-f@), 1)

where £(z) = V(z). Therefore our task is complete if we can solve (locally) the equation
F(z,£) = —r1& = Vi(z,4(2))6 + 2 + Va(z,3(2)) = 0 (7.2)

(with £ = £(z)) since then all we have to do is find the function ¥ by solving the ordinary
differential equation
{ Vi(z) = -§(2)

¥(Zo) = Yo

ly Orientation
x

Vix, y)

Figure 7.1: A Plane wave reflector

The question of local solvability of the equation (7.2) is answered by the Implicit Map-
ping Theorem which answers “yes” to the local existence of a C° function &(z) satisfying
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equation (7.2) provided that %E(Xo, &) # 0ie. ry + V1(Xo) # 0. Thus the choice of ry
is restricted in a trivial way. ’i‘his completes the proof of local existence of plane wave
reflectors.
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